I. PENDAHULUAN

1.1 Latar Belakang



Pada jarak tertentu mata kita sulit membedakan posisi dua nyala lampu yang sangat berdekatan. Gejala ini dikarenakan diameter pupil mata kita sangat sempit. Akibatnya adalah cahaya dua lampu tersebut ketika sampai ke mata kita mengalami difraksi. Difraksi cahaya adalah peristiwa pelenturan cahaya yang akan terjadi jika cahaya melalui celah yang sangat sempit. Kita dapat melihat gejala ini dengan mudah pada cahaya yang melewati sela jari-jari yang kita rapatkan kemudian kita arahkan pada sumber cahaya yang jauh, misalnya lampu neon. Atau dengan melihat melalui kisi tenun kain yang terkena sinar lampu yang cukup jauh.

Dengan melewatkan berkas sinar laser yang koheren dan monokromatik pada sebuah tepi tajam maka akan terbentuk pola difraksi pada layar. Pola difraksi juga dapat terjadi jika sinar laser dilewatkan pada celah tunggal, lebar dari celah tunggal yang digunakan dapat diukur dengan mengamati pola difraksi yang terjadi. Pola distribusi intensitas difraksi baik oleh tepi tajam maupun oleh celah tunggal dapat diketahui dengan menggunakan photocell.

Cahaya kemudian akan membelok dan menyebar dengan membentuk sudut tertentu. Apabila yang dilalui oleh cahaya adalah celah ganda dengan jarak pemisahan tertentu maka akan terjadi interferensi karena gelombang–gelombang cahaya dengan frekuensi yang sama akan saling bertumbukan. Interferensi yang terjadi dapat berupa interferensi konstruktif atau interferensi destruktif. Pada titik disaat gelombang cahaya dengan fase yang sama dan frekuensi yang sama saling bertumbukan, interferensi konstruktif akan terjadi yaitu gelombang dengan amplitudo yang maksimal. Sedangkan pada saat cahaya dengan fase yang berbeda saling bertumbukan, interferensi destruktif akan terjadi yaitu gelombang dengan amplitudo minimal.

Pada umumnya difraksi terjadi jika gelombang yang lewat bukan kecil (small opening) di sekitar rintangan atau melewati sisi yang tajam. Contoh difraksi, apabila diantara sumber titik cahaya dan layar ditempatkan suatu objek gelap, perbatasan didaerah bayangan dan pencahayaan pada layar tidak tajam. Bayangan akan mengandung pita-pita cahaya terang dan gelap jika cahaya membelok ke daerah bayangan. Intensitas pada pita yang pertama akan lebih besar daripada intensitas di daerah penerangan uniform.

Untuk dapat mempelajari dan memahami fenomena difraksi cahaya dan interferensi serta pola yang dihasilkan yang terjadi pada saat difraksi cahaya, diperlukan suatu cara yang dapat mengilustrasikan difraksi cahaya dan interferensi tersebut. Salah satu cara mengilustrasikan difraksi cahaya dan interferensi yang terjadi pada saat difraksi cahaya adalah dengan melakukan praktikum Eksperimen Fisika yang berjudul Difraksi ini.



1.2.    Tujuan Percobaan

Adapun tujuan dari percobaan Difraksi ini supaya mahasiswa dapat membuktikan interferensi dan difraksi pada gelombang cahaya yang terjadi.


                                                                                                                                   II.            TINJAUAN PUSTAKA



A.    Pola interferensi

Gelombang air mula-mula datang dalam formasi yang bias dikatakan membentuk muka gelombang datar. Sebuah papan penghalang yang terdapat celah kecil digunakan untuk menahan gelombang air menyebabkan hanya sebagian kecil saja dari air yang di”transmisikan”. Pola gelombang dari air yang ditransmisikan tersebut berbentuk lingkaran, pola semacam ini dapat dipahami dengan prinsip Huygens. Karena air terus menerus mengalir maka gelombang-gelombang tersebut saling mengalami interferensi satu sama lain. Interferensi disebabkan oleh adanya beda lintasan antar gelombang sehingga beda fase gelombang-gelombang tersebut juga berbeda menghasilkan pola muka gelombang yang lebih besar dan pola muka gelombang minimum, perhatikan dengan seksama Gambar 1. Pada peristiwa interferensi, untuk menghasilkan sumber yang koheren, secara prinsip, selalu digunakan satu sumber gelombang dimana gelombang tersebut kemudian dipecah menjadi dua atau lebih dan diset sedemikian rupa sehingga lintasan antar gelombang-gelombang tersebut berbeda. Karena gelombang pada umumnya merambat lurus, terutama gelombang elektromagnetik, maka untuk menghasilkan beda lintasan arah rambat gelombang tersebut dibelokkan. Peristiwa dimana arah rambat gelombang elektromagnetik dibelokkan ketika mengenai suatu penghalang disebut sebagai difraksi.

Peristiwa difraksi yang sangat mudah kita jumpai adalah difraksi sinar matahari oleh pintu rumah atau jendela. Jika kita perhatikan, di lantai atau dinding akan jumpai wilayah yang terang dan agak gelap.Wilayah yang terang disebabkan oleh sinar matahari yang masuk sedangkan wilayah yang agak gelap karena sinar matahari tidak dapat menjangkau wilayah tersebut. Terlihat bahwa seolah-olah terdapat garis miring yang memisahkan kedua wilayah tersebut. Garis batas tersebut menunjukkan bahwa cahaya matahari dibelokkan oleh daun pintu atau jendela. Itu merupakan salah satu contoh peristiwa difraksi. Berdasarkan literatur, pengamatan terhadap fenomena difraksi tercatat pertama kali dilakukan oleh Leonardo da Vinci, si pelukis terkenal yang hidup antara 1452–1519. Studi yang lebih ekstensif dilakukan oleh Grimaldi yang hasil pengamatannya kemudian dibukukan dan resmi dipublikasikan pada tahun 1665, dua tahun setelah kepergiannya ke alam baka. Namun demikian teori-teori yang dicetuskan oleh Grimaldi sebatas menjelaskan bagaimana cahaya merambat, belum dapat menjelaskan fenomena difraksi dengan memuaskan (Baiquni, 1985).


Gambar 1 Pola interferensi pada gelombang air yang dilewatkan pada papan bercelah.

Baru setelah pada tahun 1818 Fresnel menunjukkan bahwa fenomena difraksi dapat dijelaskan dengan merujuk pada teori Huygens digabung dengan konsep interferensi. Hasil kerja keras Fresnel ditindaklanjuti oleh Kirchhoff yang pada tahun 1882 mencetuskan cara pandang baru dalam memahami fenomena difraksi. Teorema Krchhoff ini terimplementasi dalam suatu persamaan yang disebut sebagai integral Kirchhoff. Integral Kirchhoff ditarik dari prinsip Hurgens–Fresnel yang menyatakan bahwa rambatan gelombang cahaya dari suatu muka gelombang dihasilkan dari superposisi muka gelombang sebelumnya.

Fenomena difraksi terkenal sebagai salah satu bidang optik yang sarat dengan matematika yang rumit sehingga solusi-solusi persamaan-persamaan matematis yang digunakan sebagai penjelas fenomena difraksi pada saat itu tidak ada satupun yang dianggap paling ampuh. Hingga pada tahun 1896 Sommerfeld berhasil membuat formulasi yang dianggap “ampuh” untuk menjelaskan fenomena difraksi. Sommerfeld melakukan investigasi terhadap fenomena difraksi yang terjadi pada gelombang bidang yang dirambatkan melalui cermin reflektor-transmiter. 

Gambar 2 Pola difraksi yang dihasilkan dari cahaya yang dilewatkan pada celah tunggal.
Namun, kembali pada masalah teknis, karena kerumitan model matematika yang digunakan oleh Sommerfeld dan teman-temannya maka sebagai implifikasi digunakanlah pendekatan-pendekatan yang, paling tidak, mencakup aspek kuantitatif dan kualitatif fenomena difraksi. Dari model-model yang telah diuji, model pendekatan Huygens dan Fresnel adalah yang paling banyak digemari para ilmuwan karena disamping sederhan, metode tersebut juga cukup ampuh untuk digunakan sebagai analisis fenomena difraksi (Halliday, 1987).

B.     Difraksi Franhoufer dan Fresnel

Seberkas cahaya dilewatkan melalui celah tunggal dengan lebar d. Pola difraksi dapat diamati pada layar yang diletakkan sejauh L dari celah. Berkas cahaya dibelokkan oleh celah sebesar θ relatif terhadap arah rambat cahaya datang. Untuk celah dengan d yang sangat kecil maka cahaya akan dibelokkan dalam sudut θ yang sangat kecil pula. Jika layar diletakkan pada jarak yang cukup jauh sehingga L >> d maka sudut pembelokan θ akan sangat kecil. Implikasi matematisnya adalah nilai tan θ = y/L θ. Dalam keadaan seperti itu, cahaya yang melalui celah dapat dianggap sejajar dengan arah rambat gelombang cahaya datang. Difraksi semacam ini disebut sebagai difraksi Franhoufer. Pola difraksi yang tampak pada layar adalah seperti pada Gamba .3.


Gambar 3. Pola difraksi yang tampak pada layar yang diletakkan pada jarak yang cukup jauh dari celah.

Yang dimaksud dengan “dekat” di sini adalah jika sudut penyimpangan cahaya θ cukup besar sehingga kita tidak bisa menggunakan pendekatan tan θ θ. Perhatikan bahwa pada jarak L pola yang teramati pada layar adalah pola difraksi Franhoufer. Ketika layar didekatkan menjadi L1 pola difraksi berubah, terlihat bahwa pada layar terbentuk 2 puncak gelombang dimana puncak gelombang tersebut menggambarkan interferensi konstruktif, di layar akan terlihat pola terang. Ketika layar didekatkan sehingga jaraknya menjadi L2, pola difraksi kembali berubah. Puncak-puncak gelombang semakin bertambah banyak dan rapat. Jika diingat kembali, pola semacam ini muncul pada interferensi celah ganda.
 
 
Gambar 4. Pola difraksi mengalami perubahan ketika jarak semakin didekatkan dengan celah.

Pola difraksi yang ditunjukkan pada Gambar 4 dihasilkan ketika jarak layar L cukup dekat terhadap celah. Jika layar didekatkan lagi ke celah dimana cahaya dibelokkan, maka pola difraksi yang terlihat pada layar menunjukkan pola yang semakin rumit, lihat Gambar 4. Difraksi semacam ini, dimana jarak layar terhadap celah cukup dekat sehingga kita tidak dapat menganggap cahaya yang didifraksikan sejajar, disebut dengan difraksi Fresnel (Tripler, 2001).


C.    Difraksi Franhoufer Celah Tunggal

Difraksi dapat dihasilkan dari sumber cahaya koheren yang dilewatkan pada sebuah celah kecil. Seperti yang telah kita lihat pada contoh pada Gambar 1, ilustrasi gelombang air telah menunjukkan bahwa gelombang yang melalui sebuah celah didifraksikan dan hasil difraksi tersebut menyebabkan interferensi karena setiap elemen gleombang air menempuh lintasan yang berbeda. Pada subbab sebelumnya kita telah membahas mengenai difraksi Franhoufer dimana konsep dasar difraksi tersebut adalah pembentukan difraksi oleh cahaya yang dibelokkan dalam arah yang hampir sejajar dengan arah rambat gelombang datang. Jika lebar celah ditambah sehingga lebih besar dibanding dengan panjang gelombang cahaya maka tentu saja cahaya yang masuk melalui celah tersebut mau tidak mau akan dibelokkan dengan sudut tertentu. Seperti terlihat pada Gambar 5, seberkas cahaya dilewatkan pada celah dimana lebar celah tersebut memiliki ukuran lebih besar dibanding panjang gelombang cahaya yang melewatinya. 

Gambar 5. Difraksi Franhoufer pada gelombang cahaya menggunakan celah yang memiliki ukuran lebih besar disbanding panjang gelombang cahaya. Cahaya dibelokkan dengan sudut θ relatif terhadap cahaya datang.

Sistem difraksi yang digunakan adalah difraksi Franhoufer. Perhatikan bahwa ketika fokus pada berkas cahaya yang dibelokkan di sekitar celah, kita lihat bahwa berkas cahaya tersebut dibelokkan dalam sudut tertentu, dalam gambar di atas cahaya dibelokkan sebesar θ. Ketika berkas cahaya jatuh pada layar, berkas cahaya tersebut dianggap menempuh lintasan yang sama, ingat kembali konsep difraksi Franhoufer. Perhatikan segmen F, kita ambil tiga berkas gelombang cahaya yaitu berkas cahaya (1), (2), dan (3). Pada batas lintasan op,berkas cahaya (1), cahaya menempuh lintasan sejauh pq. Kita misalkan lintasan pq sebanding dengan ½Î». Pada segmen ½oq berkas cahaya (2) menempuh lintasan rt dimana berkas cahaya yang melampui lintasan itu sebanding dengan ¼ λ. Beda fase antara berkas cahaya (1) dan (2) adalah 1800 dan ini berarti berkas cahaya tersebut mengalami interferensi destruktif, pola difraksi yang tampak pada titik A adalah gelap (Allard, 1990).

Perhatikan Gambar 5, semakin kecil perbandingan λ/d maka semakin kecil penyimpangan lintasan cahaya. Dalam ungkapan yang berbeda, semakin besar lebar celah maka semakin kecil penyimpangan lintasan dan akibatnya pola difraksi yang tampak pada layar hanya menghasilkan satu pola terang saja. Hal ini menjadi logis karena untuk nilai n= 0, cahaya yang ditransmisikan dari celah ke layar sejajar dengan cahaya datang dan dengan demikian, kalaupun ada interferensi, menghasilkan pola terang. Pola difraksi yang terjadi pada difraksi Franhoufer dapat dilihat pada Gambar 6

Gambar 6 Pola difraksi Franhoufer celah tunggal yang tampak pada layar.

Pola gelap terang hasil interferensi yang tampak pada layar merepresentasikan energi gelombang elektromagnetik yang jatuh suatu titik. Seperti yang telah dikemukakan pada, intensitas berhubungan dengan tingkat kecerahan cahaya. Pada titik dimana terdapat terang pusat, disitulah intensitas cahaya paling besar. Dalam konteks energi elektromagnetik, pada titik itu pula energi gelombang elektromagnetik terakumulasi secara maksimum (Dood, 2000).


D.    Intensitas Cahaya Pada Difraksi

1.      Franhoufer Celah Tunggal


Gambar 7 Distribusi cahaya pada difraksi celah tunggal Franhoufer.

Distribusi intensitas cahaya pada difraksi celah tunggal Franhoufer tampak seperti pada Gambar 7. Pada saat θ intensitas yang terlihat pada layar adalah maksimum. Intensitas semakin menurun dengan bertambahnya sudut. Semakin besar sudut semakin kecil intensitas. Dalam difraksi Franhoufer, intensitas maksimum hampir terlokalisir pada satu titik yaitu pada terang pusat. Intensitas yang terukur pada saat θ=0 adalah juga maksimum. Perhatikan bahwa ketika θ = 0 nilai α adalah nol.Namun dari persamaan tersebut dihasilkan intensitas nol/nol. Sudut α diukur dalam satuan radian. Hasil perhitungan nol/nol menghasilkan angka yang tidak tentu (Ishimaru, 1991).



E.     Difraksi dan Resolusi Alat Optik

Pada pembahasan sebelumnya telah kita tunjukkan bahwa lebar celah yang digunakan untuk difraksi cahaya mempengaruhi pola difraksi yang terbentuk pada layar. Pada difraksi Franhoufer diperoleh interferensi maksimum terlokalisir pada satu titik yaitu pada saat sudut θ=0. Namun demikian, di sekitar terang maksimum terdapat pola terang lainnya walaupun intensitasnya sangat kecil.

Dalam aplikasinya, munculnya pola terang di sekitar terang pusat menunjukkan keterbatasan suatu alat optik untuk memisahkan objek. Yang dimaksud dengan memisahkan objek adalah melihat objek dengan jelas.Tingkat akurasi alat optik yang digunakan untuk melihat objek dengan jelas/melihat jelas dua atau lebih objek yang berdekatan disebut resolusi. Contoh sederhana yang dapat kita gunakan sebagai ilustrasi adalah melihat lampu sebuah mobil yang berada pada jarak yang sangat jauh. Jika kita berada dekat dengan mobil, mata kita dapat dengan mudah membedakan dan mendeteksi bahwa kedua lampu mobil tersebut terpisah. Namun jika kita berada pada jarak yang sangat jauh, lampu mobil seolah-olah menjadi satu. Mata kita memiliki keterbatasan dalam melihat dua benda atau atau lebih yang terpisah. Kebanyakan alat optik menggunakan cermin atau lensa yang berbentuk lingkaran. Pada tahun 1830-an, Goerge Airy mengadakan eksperimen terkait fenomena difraksi pada cahaya yang dilewatkan pada celah berbentuk lingkaran.

Yang mana D adalah diameter celah yang digunakan sebagai celah difraksi. Pola difraksi yang diamati oleh Geroge Airy dapat dilihat pada Gambar 8. Konsep Airy tidak dapat diterapkan untuk menganalisis objek yang saling berdekatan karena difraksi Airy menghasilkan pola interferensi tunggal saja. Agar dua objek terpisah dapat dikenali sebagai dua objek yang terpisah, bukan objek yang menyatu, maka difraksi dari objek pertama harus saling tumpang tindih dalam konfigurasi interferensi minimum dengan difraksi objek kedua. Keadaan tersebut dipenuhi jika sudut pisah antara dua objek minimum adalah θmin. Untuk dua objek yang terpisah sejauh S berada pada jarak L dari suatu alat optik yang berdiameter D maka syarat agar dua objek tersebut dapat terlihat dengan jelas adalah:

Gambar 8. Pola terang pusat disk Airy.

Berdasarkan Gambar 8. Di atas sekitar 85% dari seluruh intensitas cahaya terkonsentrasi pada area disk Airy tersebut (Keiser, 1991).



F.     Kisi Difraksi

Jika cahaya dilewatkan pada sebuah celah maka cahaya tersebut akan mengalami difraksi yang pada gilirannya akan mengalami interferensi, ditandai dengan adanya pola gelap-terang yang terlihat pada layar. Pada dasarnya setiap gelombang cahaya yang melalui suatu penghalang akan mengalami pembelokan arah rambat. Berdasarkan eksperimen yang dilakukan para ilmuwan, difraksi dapat juga diamati jika cahaya dilewatkan pada banyak celah. Kita telah mempelajari mengenai interferensi dan difraksi pada celah tunggal dan ganda. Dari dua konfigurasi tersebut selalu diperoleh pola gelap-terang pada layar. Suatu penghalang yang terdiri dari banyak sekali celah dimana jarak antara celah tersebut seragam (jarak antar celah sama dan teratur) disebut dengan kisi difraksi. Jumlah celah dalam suatu kisi dapat mencapai orde ribuan celah tiap cm. Kisi difraksi memiliki beberapa kelebihan dibanding celah tunggal atau ganda. Ketika cahaya melalui kisi, setiap celah pada kisi tersebut dapat dianggap sebagai sumber gelombang cahaya. Setiap cahaya dibelokkan dengan besar sudut tertentu sehingga cahaya-cahaya tersebut memiliki lintasan yang berbeda satu dengan yang lainnya.
 
Gambar 9 Cahaya datang pada kisi difraksi.
Pada layar terbentuk pola gelap terang, jika demikian maka cahaya yang mengalami interferensi akan lebih banyak dibanding interferensi yang terjadi pada celah ganda dan tunggal. Jumlah interferensi yang lebih banyak ini menghasilkan pola gelap terang yang lebih kuat (intensitasnya lebih kuat) pada layar sehingga pengukuran dan identifikasi terhadap pola-pola interferensi tersebut menjadi lebih akurat. Pola gelap dipenuhi jika beda fase antara gelombang cahaya tersebut 1800. Beda fase tersebut sebanding dengan beda lintasan ½Î». Untuk Sembarang posisi pada layar, pola gelap teramati pada beda fase ½Î» dan kelipatan bilangan bulat. Cahaya yang mengalami interferensi atau difraksi pada dasarnya tidak mengalami penambahan atau pengurangan (Mooney, 2000).

 
Gambar 10 Difraksi cahaya pada salah satu segmen kisi difraksi.

Energi gelombang elektromagnetik yang dibawa oleh cahaya adalah kekal. Cahaya hanya mengalami pembelokan arah rambat dan superposisi saja. Jika I0 menyatakan intensitas cahaya yang dibawa oleh berkas cahaya yang melewati sebuah celah pada suatu kisi maka intensitas total cahaya yang jatuh pada layar adalah Itotal=NI0 dengan N menyatakan jumlah celah pada kisi yang digunakan. Intensitas rata-rata pada layar dengan demikian adalah NI0. Pada layar terbentuk pola gelap terang sehingga intensitas cahaya tersebar tidak tepat pada seluruh permukaan layar melainkan terkonsentrasi pada titik-titik dimana terjadi interferensi maksimum saja. Dengan demikian intensitas pada setiap titik maksimum tentu lebih besar dari NI0. Intensitas cahaya sebanding dengan kuadrat medan listrik (Sanjaya, 2010).


                                                                                                                               III.            PROSEDUR PERCOBAAN



A.    Alat dan Bahan

Adapun alat dan bahan yang digunakan dalam percobaan difraksi ini adalah :

1. Layar Penangkap Bayangan
2. Penggaris
3. Statif untuk memegang slit dan kisi
4. Celah banyak (grating)
5. Meteran
6. Celah tunggal
7. Sumber cahaya dari laser


B.     Prosedur Percobaan
1. Celah Tunggal
1. Mengatur keluaran sinar LASER.
2. Menentukan lebar celah dengan melihat skala yang menempel pada slit.
3. Menghidupkan LASER dan mengamati pola difraksi pada dinding.
4. Mengukur jarak antara pola bayangan.
5. Mengukur jarak antara celah dengan dinding dan jarak antara pola satu dengan yang lain. Mengukur nilai θ dengan menggunakan rumus sinus. Mengkonfirmasi hasil percobaan dengan perhitungan.
6. Mengulang percobaan no 2 dengan lebar celah yang berbeda dan mengukur jarak antara pola bayangan. Mengaturnya dengan memutar baut pada celah tunggal.

2. Celah Banyak atau Kisi
1. Mengatur keluaran sinar LASER dengan kisi sama tinggi.
2. Menempatkan kisi didepan LASER sejauh beberapa cm dan jarak layar sekitar 20 cm.
3. Menghidupkan LASER dan mengamati bayangan pada layar untuk maksimum orde ke-nol, ke-1, dan ke-2. Menentukan sudut orde ke-nol, ke-1, dan ke-2. Mengukur sudut harus pada layar yang melingkar atau dengan menggunakan rumus tangen θ.
4. Mengganti LASER dengan lampu cahaya tampak yang telah difilter dengan warna hijau dan merah dan menentukan berapa sudut orde ke-nol, ke-1, dan ke-2.
5. Merubah jarak kisi dan layar serta mengamati hasilnya.

C.    SKETSA ALAT
 

 




                                                                                             IV.            HASIL PENGAMATAN DAN PEMBAHASAN



A.    Hasil Pengamatan

Adapun hasil yang dapat diamati setelah melakukan percobaan ini adalah:
Tabel 1. Hasil Pengamatan pada Celah Tunggal
No.             l (10-2m)           m                     y (10'-2m)             a(10'-4m)               λ (m)
1.                359                  1                      2,0                               3                     
2.                359                  2                      3,5                               3                     
3.                359                  3                      5,0                               3                     

Tabel 2. Hasil Pengamatan pada Celah Banyak
No         l(10'-2m)        M          y(10'-2m)      N(line/mm)         d.1/N (cm)           λ (m)
1                 65               1                 12,6               600                  1,67                 0,003
2                 65               2                11,5                600                  1,67                 0,218
3                 65               3                 16,9               600                  1,67                 0,231



B.     Pembahasan

Pada tahun 1818 Fresnel menunjukkan bahwa fenomena difraksi dapat dijelaskan dengan merujuk pada teori Huygens digabung dengan konsep interferensi. Hasil kerja keras Fresnel ditindaklanjuti oleh Kirchhoff yang pada tahun 1882 mencetuskan cara pandang baru dalam memahami fenomena difraksi. Teorema Krchhoff ini terimplementasi dalam suatu persamaan yang disebut sebagai integral Kirchhoff. Integral Kirchhoff ditarik dari prinsip Hurgens–Fresnel yang menyatakan bahwa rambatan gelombang cahaya dari suatu muka gelombang dihasilkan dari superposisi muka gelombang sebelumnya.

Fenomena difraksi terkenal sebagai salah satu bidang optik yang sarat dengan matematika yang rumit sehingga solusi-solusi persamaan-persamaan matematis yang digunakan sebagai penjelas fenomena difraksi pada saat itu tidak ada satupun yang dianggap paling ampuh. Hingga pada tahun 1896 Sommerfeld berhasil membuat formulasi yang dianggap “ampuh” untuk menjelaskan fenomena difraksi. Sommerfeld melakukan investigasi terhadap fenomena difraksi yang terjadi pada gelombang bidang yang dirambatkan melalui cermin reflektor-transmiter.

Namun, kembali pada masalah teknis, karena kerumitan model matematika yang digunakan oleh Sommerfeld dan teman-temannya maka sebagai implifikasi digunakanlah pendekatan-pendekatan yang, paling tidak, mencakup aspek kuantitatif dan kualitatif fenomena difraksi. Dari model-model yang telah diuji, model pendekatan Huygens dan Fresnel adalah yang paling banyak digemari para ilmuwan karena disamping sederhan, metode tersebut juga cukup ampuh untuk digunakan sebagai analisis fenomena difraksi.

Difraksi adalah peristiwa pelenturan muka gelombang ketika melewati celah sempit. Pola difraksi gelombang cahaya dapat diamati dengan eksperimen menggunakan difraksi celah tunggal dan kisi difraksi. Difraksi cahaya terjadi apabila cahaya yang sedang merambat mengenai suatu objek penghalang atau melalui suatu celah yang sangat sempit. Difraksi cahaya terjadi sebagai akibat dari interferensi yang terjadi diantara tiap–tiap muka gelombang pada gelombang cahaya itu sendiri. Hal ini dapat dijelaskan berdasarkan prinsip Huygens yang menyatakan bahwa setiap titik pada muka gelombang berlaku sebagai sumber sekunder pada gelombang merambat kearah rambat berikutnya. Interferensi bila di depan celah diletakkan sebuah layar detektor, akan tampak pola gelap yang terjadi akibat interferensi destruktif dari gelombang cahaya dan mengakibatkan jumlah total amplitudo nya berkurang, dan pola terang yang terjadi akibat interferensi konstruktif dari gelombang cahaya dan mengakibatkan jumlah total amplitudonya bertambah. Pada difraksi celah tunggal, cahaya sumber dilewatkan pada satu buah celah. Pola difraksi cahayanya bergantung pada perbandingan ukuran panjang gelombang dengan lebar celah yang dilewati.

Di dalam difraksi celah tunggal setiap titik pada celah tunggal dapat dianggap sebagai sumber gelombang sekunder.Selisih antara kedua berkas yang terpisah sejauh d adalah dsin θ. Analogi dengan pola interferensi celah ganda Young, pola terang difraksi celah tunggal diperoleh jika: dsin θ =nλ, dengan n= 0, 1, 2, 3, dengan d adalah lebar celah. Interferensi minimum (garis gelap) terjadi jika dsin θ=(n– ½ )λ, dengan n= 1, 2, 3, …

Pada difraksi celah ganda, cahaya sumber dilewatkan pada dua buah celah yang terpisah secara paralel. Difraksi cahaya pada celah ganda pola difraksi cahayanya bergantung pada perbandingan ukuran panjang gelombang dengan lebar celah yang dilewati dan juga jarak pemisahan celah pertama dan celah kedua .

Difraksi yang terjadi pada kisi-kisi terdiri atas banyak celah dengan lebar yang sama. Lebar tiap celah pada kisi difraksi disebut konstanta kisi dan dilambangkan dengan d. Jika dalam sebuah kisi sepanjang 1 cm terdapat N celah konstanta kisinya adalah pola terang oleh kisi difraksi diperoleh jika: dsin θ =nλ, dengan n=0, 1, 2, 3, …dengan d adalah konstanta kisi dan θ adalah sudut difraksi. Interferensi minimum (garis gelap) terjadi jika d sin θ = (n – ½ )λ, dengan n=1, 2, 3, …

Dalam optika dikenal difraksi Fresnel dan difraksi Fraunhofer. Difraksi Fresnel terjadi jika gelombang cahaya melalui celah dan terdifraksi pada daerah yang relatif dekat, menyebabkan setiap pola difraksi yang teramati berbeda-beda bentuk dan ukurannnya, relatif terhadap jarak. Difraksi Fresnel juga disebut difraksi medan dekat.

Difraksi Fraunhofer terjadi jika gelombang medan melalui celah atau kisi, menyebabkan perubahan hanya pada ukuran pola yang teramati pada daerah yang jauh. Gelombang-gelombang cahaya yang keluar dari celah atau kisi pada difraksi Fraunhofer hampir sejajar. Difraksi fraunhofer juga disebut difraksi medan jauh.

Jika kita memiliki dua benda titik yang terpisah pada jarak tertentu, bayangan kedua benda bukanlah dua titik tetapi dua pola difraksi. Jika jarak pisah kedua benda titik terlalu dekat maka pola difraksi kedua benda saling menindih. Kriteria Rayleigh yang ditemukan Lord Rayleigh menyatakan bahwa dua benda titik yang dapat dibedakan oleh alat optik, jika pusat pola difraksi benda titik pertama berimpit dengan pita gelap (minimum) ke satu pola difraksi benda kedua. Ukuran sudut pemisah agar dua benda titik masih dapat dipisahkan secara tepat berdasarkan Kriteria Rayleigh disebut sudut resolusi minimum (θm).

Percobaan difraksi ini dilakukan dengan menggunakan dua celah diantaranya adalah celah tunggal dan celah banyak. Pada percobaan celah tunggal, dilakukan dengan menghidupkan sebuah laser yang mengarah ke dinding. Setelah seberkas sinar terbentuk pada didinding, praktikan mencatat data dan mengamati pola difraksi yang terbentuk. Sedangkan pada celah banyak, sinar laser diarahkan menuju layar sebagai objek pantulan sinar dari laser. Perbedaan percobaan dengan menggunakan celah tunggal dan celah banyak salah satunya adalah pada jarak antara sumber cahaya (laser) ke objek ukur (dinding dan layar).

Pada praktikum kali ini yaitu untuk mempelajari peristiwa kisi difraksi, menentukan panjang gelombang sumber sinar laser. Kisi difraksi adalah kisi-kisi yang sering digunakan untuk mengukur panjang gelombang dan untuk mengkaji struktur dan identitas garis-garis spektrum. Kisi-kisi tersebut dibuat dengan galur-galur sejajar yang berjarak yang berjarak sama terhadap satu sama lain, yang lebih spesifiknya lagi kisi difraksi bermanfaat untuk mengukur panjang gelombang cahaya. Pada percobaan ini yaitu mencari jarak kisi dengan sepersatuan banyaknya garis dalam mm untuk banyaknya garis dalam mm (N), untuk N 600 didapatkan jarak kisi sebesar 1,67x10-4cm . Untuk jarak titik terang pusat dengan sumber cahaya (L) yaitu 92 cm untuk mencari nilai panjang gelombang (λ) digunakan rumus dsinθ=nλ, dimana d yaitu jarak kisi sesuai dengan yang dijelaskan diatas, sinθ nilainya sama dengan jarak terang pusat dengan jarak terang pertama, kedua (y2) seper jarak terang pusat denga sumber cahaya (L) yaitu y/L, untuk n yaitu orde. Dari hasil pengamatan bahwa semakin besar nilai N yang didapatkan semakin kecil jarak kisi (d) yang didapatkan dan sebaliknya semakin kecil nilai N yang didapatkan semakin besar jarak kisi (d) yang didapatkan, dan untuk nilai jarak terang pusat dengan jarak terang pertama dari nilai N yang berbeda semakin besar nilai N yang diperoleh, maka semakin besar pula nilai jarak terang pusat dengan jarak terang pertama (y) yang didapatkan.

Pada percobaan celah tunggal hal yang harus dilakukan adalah, menghidupkan sumber cahaya laser dan kemudian mengatur posisi celah terhadap sumber cahaya dan setelah itu melihat apakah sudah terbentuk dengan baik difraksi cahaya pada dinding yang menjadi pengganti layar, jika belum atur celah hingga benar-benar mendapatkan hasil difraksi yang baik. Dalam percobaan menggunakan celah tunggal ini, diperoleh hasil  jarak antara laser dan dinding dalam pengukuran sebesar 359x10-2 meter, untuk lebar fringe cerah pusat pertama, kedua, dan ketiga diperoleh nilai masing-masing yaitu sebesar 2x10-2 m, 3,5x10-2 m, dan 5 x 10-2 m. Setelah dilakukan perhitungan dari data yang diperoleh untuk celah tunggal dihasilkan panjang gelombang  sebesar m, =m2,  Saat percobaan menggunakan celah banyak langkah kerja yang dilakukan sama seperti percobaan menggunakan celah tunggal hanya saja jarak yang digunakan antara layar dan sumber cahaya sebesar 65x10-2 m. Dan dari percobaan ini diperoleh data diantaranya adalah 0,3x10-2m, λ2 = 0,218m dan untuk λ3 = 0,231m. sedangkan untuk nila rata-ratanya sebesar , 0,350m, , dari kedua percobaan yang telah dilakukan, diperoleh nilai KR menggunakan celah tunggal sebesar 3,92%, percobaan menggunakan celah banyak sebesar 29,01 %, nilai KR yang diperoleh daripercobaan celah tunggal lebih kecil dibandingkan dengan nilai KR yang diperoleh pada celah banyak, hal ini bias disimpulkan bahwa semakin kecil % error (KR) yang didapatkan, maka semakin baik pula hasil pengamatannya. Dengan kata lain praktikan berhasil mengamati difraksi pada celah tunggal dengan baik, namun kurang berhasil mengamati proses pada saat pengambilan data terhadap difraksi celah ganda (banyak).

Gelombang cahaya yang terbentuk pada layar  tersusun secara pararel tetapi tidak bertindih. ada beberapa kendala yang di alami oleh para praktikan disaat berlangsungnya proses pengambilan data diantaranya adalah praktikan mengalami kesulitan dalam menentukan cahaya terang yang menjadi titik acuan pengukuran, susah dalam membuat pola difraksi yang bagus agar mudah diamati karena sinar laser tidak tepat mengarah ke celah variabel, dan tidak hanya itu kemampuan dari para praktikan yang terbatas dalam ilmu pengetahuan terutama terkait teori sifat gelombang cahaya juga mempengaruhi jalannya percobaan.

Aplikasi dari difraksi dapat kita temukan pada permukaan sebuah CD yang memunculkan pola warna-warni yang apabila dilihat dari berbagai sudut pandang pola warna tersebut dapat berubah-ubah. Peristiwa tersebut merupakan contoh dari difraksi gelombang cahaya. Ketika seberkas cahaya terhalang oleh suatu bahan yang tidak transparan maka lintasan cahaya tersebut akan mengalami pembelokan. Itulah yang disebut difraksi. Pada dasarnya difraksi merupakan salah satu contoh dari interferensi gelombang. Sifat gelombang yang dapat dibelokkan ini ternyata dapat diterapkan untuk menganalisa struktur suatu material atau bahan tertentu. Suara dan air juga mempunyai sifat yang dapat membelok pada sekitar sudut-sudut. Fenomena ini dikenal sebagai difraksi yang juga dapat dipandang sebagai interferensi dari sejumlah besar sumber- sumber gelombang koheren.


                                                                                                                                                 V.            KESIMPULAN




Dari hasil pengamatan diperoleh kesimpulan sebagai berikut:
1.      Kisi difraksi adalah kisi-kisi yang dibuat dengan galur-galur sejajar yang berjarak sama terhadap satu sama lain, yang lebih spesifiknya lagi kisi difraksi bermanfaat untuk mengukur panjang gelombang.
2.      Jika dalam sebuah kisi sepanjang 1 cm terdapat N celah konstanta kisinya adalah pola terang oleh kisi difraksi diperoleh d sinθ=nλ.
3.      Semakin besar nilai N yang digunakan semakin besar nilai y yang didapatkan.
4.      Semakin besar nilai N yang digunakan jarak kisi (d) yang didapatkan semakin kecil, sebaliknya semakin kecil nilai N yang digunakan nilai jarak kisi (d) yang didapatkan semakin besar.
5.      Nilai panjang gelombang untuk N=600 pada celah tunggal dengan y1 yaitu 2x10-2m sebesar 16x 10-7m,  y2 yaitu 3,5x10-2m sebesar 14x 10-7m, y3 yaitu 5x10-2m sebesar 13x 10-7m.
6.      Nilai panjang gelombang untuk N=600 pada celah banyak dengan y1 yaitu 12,6x10-2m sebesar 0,3x 10-2m, y2 yaitu 11,5x10-2m sebesar 0,218m, y3 yaitu 16,9x10-2m sebesar 0,231m.
7.      Panjang gelombang rata-rata pada celah tunggal diperoleh sebesar 14x10-7m. Dan panjang gelombang rata-rata pada celah banyak diperoleh sebesar 0,316m, sedangkan panjang gelombang sinar laser berdasarkan referensi sebesar 632,8x10-9m.

 
DAFTAR PUSTAKA



Allard, Frederick C. 1990. Fiber Optics Handbook for Engineer and Scientist. USA: Mc Graw Hill.

Baiquni. 1985. Fisika Modern. Jakarta: PN Balai Pustaka.

Dood, Annabel Z. 2000. The Essential Guideto Telecomunications (Panduan Pokok untuk Telekomunikasi). Yogyakarta: Penerbit Andi.

Halliday, Resnick. 1987. Fisika Untuk Universitas Jilid 2. Jakarta: Erlangga.

Ishimaru, Akira. 1991. Electromagnetic, Wave Propagation, Radiation and Scattering. Inc: Prentice Hall.

Keiser, Gerd. 1991. Optical Fiber Communications. USA: Mc Graw-Hill.Inc.

Mooney, William J. 2000. Optoelectronic Devices and Principle. USA: Prentice-Hall International. Inc.

Sanjaya, Mada. 2010. Modul Eksperimen Fisika 2 . Bandung: Universitas Islam Negeri Sunan Gunung Djati Bandung.

Tripler, Paul A. 2001. Fisika Untuk Sains dan Tekhnik. Jakarta: Erlangga.

 

Post a Comment

 
Top